metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24.44D6, C6.272+ (1+4), C3⋊D4⋊5D4, (C2×D4)⋊19D6, C22⋊C4⋊6D6, C22≀C2⋊5S3, C23⋊2D6⋊5C2, C3⋊4(D4⋊5D4), D6.16(C2×D4), (C6×D4)⋊8C22, D6⋊3D4⋊13C2, D6⋊C4⋊12C22, (D4×Dic3)⋊12C2, C6.57(C22×D4), C22.11(S3×D4), C23.14D6⋊3C2, Dic3⋊4D4⋊3C2, C23.9D6⋊13C2, (C2×C12).29C23, (C2×C6).135C24, C4⋊Dic3⋊26C22, Dic3.19(C2×D4), (C22×C6).9C23, C2.29(D4⋊6D6), C22⋊5(D4⋊2S3), Dic3⋊C4⋊10C22, (C4×Dic3)⋊15C22, (C2×Dic6)⋊20C22, (C23×C6).68C22, C23.17(C22×S3), C23.11D6⋊12C2, Dic3.D4⋊13C2, C6.D4⋊50C22, C22.D12⋊10C2, (S3×C23).43C22, (C22×S3).54C23, C22.156(S3×C23), (C2×Dic3).222C23, (C22×Dic3)⋊14C22, C2.30(C2×S3×D4), (S3×C2×C4)⋊8C22, (S3×C22⋊C4)⋊3C2, C6.77(C2×C4○D4), (C2×C6).54(C2×D4), (C3×C22≀C2)⋊6C2, (C2×D4⋊2S3)⋊6C2, (C2×C6)⋊10(C4○D4), (C2×C3⋊D4)⋊8C22, (C22×C3⋊D4)⋊9C2, C2.28(C2×D4⋊2S3), (C3×C22⋊C4)⋊6C22, (C2×C4).29(C22×S3), (C2×C6.D4)⋊20C2, SmallGroup(192,1150)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 928 in 334 conjugacy classes, 107 normal (91 characteristic)
C1, C2 [×3], C2 [×9], C3, C4 [×10], C22, C22 [×4], C22 [×25], S3 [×3], C6 [×3], C6 [×6], C2×C4 [×3], C2×C4 [×16], D4 [×18], Q8 [×2], C23 [×4], C23 [×12], Dic3 [×2], Dic3 [×5], C12 [×3], D6 [×2], D6 [×9], C2×C6, C2×C6 [×4], C2×C6 [×14], C42, C22⋊C4 [×3], C22⋊C4 [×9], C4⋊C4 [×4], C22×C4 [×6], C2×D4 [×3], C2×D4 [×10], C2×Q8, C4○D4 [×4], C24, C24, Dic6 [×2], C4×S3 [×3], C2×Dic3 [×6], C2×Dic3 [×7], C3⋊D4 [×4], C3⋊D4 [×9], C2×C12 [×3], C3×D4 [×5], C22×S3 [×2], C22×S3 [×5], C22×C6 [×4], C22×C6 [×5], C2×C22⋊C4 [×2], C4×D4 [×2], C22≀C2, C22≀C2, C4⋊D4 [×3], C22⋊Q8, C22.D4 [×2], C4.4D4, C22×D4, C2×C4○D4, C4×Dic3, Dic3⋊C4 [×2], C4⋊Dic3 [×2], D6⋊C4 [×4], C6.D4 [×5], C3×C22⋊C4 [×3], C2×Dic6, S3×C2×C4 [×2], D4⋊2S3 [×4], C22×Dic3 [×4], C2×C3⋊D4 [×6], C2×C3⋊D4 [×4], C6×D4 [×3], S3×C23, C23×C6, D4⋊5D4, Dic3.D4, S3×C22⋊C4, Dic3⋊4D4, C23.9D6, C23.11D6, C22.D12, D4×Dic3, C23⋊2D6, D6⋊3D4, C23.14D6 [×2], C2×C6.D4, C3×C22≀C2, C2×D4⋊2S3, C22×C3⋊D4, C24.44D6
Quotients:
C1, C2 [×15], C22 [×35], S3, D4 [×4], C23 [×15], D6 [×7], C2×D4 [×6], C4○D4 [×2], C24, C22×S3 [×7], C22×D4, C2×C4○D4, 2+ (1+4), S3×D4 [×2], D4⋊2S3 [×2], S3×C23, D4⋊5D4, C2×S3×D4, C2×D4⋊2S3, D4⋊6D6, C24.44D6
Generators and relations
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e6=f2=d, ab=ba, eae-1=faf-1=ac=ca, ad=da, fbf-1=bc=cb, ebe-1=bd=db, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e5 >
(1 7)(2 32)(3 9)(4 34)(5 11)(6 36)(8 26)(10 28)(12 30)(13 39)(14 20)(15 41)(16 22)(17 43)(18 24)(19 45)(21 47)(23 37)(25 31)(27 33)(29 35)(38 44)(40 46)(42 48)
(1 22)(2 17)(3 24)(4 19)(5 14)(6 21)(7 16)(8 23)(9 18)(10 13)(11 20)(12 15)(25 42)(26 37)(27 44)(28 39)(29 46)(30 41)(31 48)(32 43)(33 38)(34 45)(35 40)(36 47)
(1 25)(2 26)(3 27)(4 28)(5 29)(6 30)(7 31)(8 32)(9 33)(10 34)(11 35)(12 36)(13 45)(14 46)(15 47)(16 48)(17 37)(18 38)(19 39)(20 40)(21 41)(22 42)(23 43)(24 44)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 12 7 6)(2 5 8 11)(3 10 9 4)(13 38 19 44)(14 43 20 37)(15 48 21 42)(16 41 22 47)(17 46 23 40)(18 39 24 45)(25 36 31 30)(26 29 32 35)(27 34 33 28)
G:=sub<Sym(48)| (1,7)(2,32)(3,9)(4,34)(5,11)(6,36)(8,26)(10,28)(12,30)(13,39)(14,20)(15,41)(16,22)(17,43)(18,24)(19,45)(21,47)(23,37)(25,31)(27,33)(29,35)(38,44)(40,46)(42,48), (1,22)(2,17)(3,24)(4,19)(5,14)(6,21)(7,16)(8,23)(9,18)(10,13)(11,20)(12,15)(25,42)(26,37)(27,44)(28,39)(29,46)(30,41)(31,48)(32,43)(33,38)(34,45)(35,40)(36,47), (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,33)(10,34)(11,35)(12,36)(13,45)(14,46)(15,47)(16,48)(17,37)(18,38)(19,39)(20,40)(21,41)(22,42)(23,43)(24,44), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,12,7,6)(2,5,8,11)(3,10,9,4)(13,38,19,44)(14,43,20,37)(15,48,21,42)(16,41,22,47)(17,46,23,40)(18,39,24,45)(25,36,31,30)(26,29,32,35)(27,34,33,28)>;
G:=Group( (1,7)(2,32)(3,9)(4,34)(5,11)(6,36)(8,26)(10,28)(12,30)(13,39)(14,20)(15,41)(16,22)(17,43)(18,24)(19,45)(21,47)(23,37)(25,31)(27,33)(29,35)(38,44)(40,46)(42,48), (1,22)(2,17)(3,24)(4,19)(5,14)(6,21)(7,16)(8,23)(9,18)(10,13)(11,20)(12,15)(25,42)(26,37)(27,44)(28,39)(29,46)(30,41)(31,48)(32,43)(33,38)(34,45)(35,40)(36,47), (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,33)(10,34)(11,35)(12,36)(13,45)(14,46)(15,47)(16,48)(17,37)(18,38)(19,39)(20,40)(21,41)(22,42)(23,43)(24,44), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,12,7,6)(2,5,8,11)(3,10,9,4)(13,38,19,44)(14,43,20,37)(15,48,21,42)(16,41,22,47)(17,46,23,40)(18,39,24,45)(25,36,31,30)(26,29,32,35)(27,34,33,28) );
G=PermutationGroup([(1,7),(2,32),(3,9),(4,34),(5,11),(6,36),(8,26),(10,28),(12,30),(13,39),(14,20),(15,41),(16,22),(17,43),(18,24),(19,45),(21,47),(23,37),(25,31),(27,33),(29,35),(38,44),(40,46),(42,48)], [(1,22),(2,17),(3,24),(4,19),(5,14),(6,21),(7,16),(8,23),(9,18),(10,13),(11,20),(12,15),(25,42),(26,37),(27,44),(28,39),(29,46),(30,41),(31,48),(32,43),(33,38),(34,45),(35,40),(36,47)], [(1,25),(2,26),(3,27),(4,28),(5,29),(6,30),(7,31),(8,32),(9,33),(10,34),(11,35),(12,36),(13,45),(14,46),(15,47),(16,48),(17,37),(18,38),(19,39),(20,40),(21,41),(22,42),(23,43),(24,44)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,12,7,6),(2,5,8,11),(3,10,9,4),(13,38,19,44),(14,43,20,37),(15,48,21,42),(16,41,22,47),(17,46,23,40),(18,39,24,45),(25,36,31,30),(26,29,32,35),(27,34,33,28)])
Matrix representation ►G ⊆ GL6(𝔽13)
12 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 2 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 0 | 0 | 0 |
0 | 0 | 8 | 5 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 12 | 1 |
0 | 12 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 0 | 0 | 0 |
0 | 0 | 0 | 5 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,2,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,12,0,0,0,0,1,0,0,0,0,0,0,0,8,8,0,0,0,0,0,5,0,0,0,0,0,0,0,12,0,0,0,0,1,1],[0,1,0,0,0,0,12,0,0,0,0,0,0,0,5,0,0,0,0,0,0,5,0,0,0,0,0,0,12,0,0,0,0,0,1,1] >;
39 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 2L | 3 | 4A | 4B | 4C | 4D | ··· | 4I | 4J | 4K | 4L | 6A | 6B | 6C | 6D | ··· | 6I | 6J | 12A | 12B | 12C |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | ··· | 6 | 6 | 12 | 12 | 12 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 6 | 6 | 12 | 2 | 4 | 4 | 4 | 6 | ··· | 6 | 12 | 12 | 12 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
39 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D4 | D6 | D6 | D6 | C4○D4 | 2+ (1+4) | S3×D4 | D4⋊2S3 | D4⋊6D6 |
kernel | C24.44D6 | Dic3.D4 | S3×C22⋊C4 | Dic3⋊4D4 | C23.9D6 | C23.11D6 | C22.D12 | D4×Dic3 | C23⋊2D6 | D6⋊3D4 | C23.14D6 | C2×C6.D4 | C3×C22≀C2 | C2×D4⋊2S3 | C22×C3⋊D4 | C22≀C2 | C3⋊D4 | C22⋊C4 | C2×D4 | C24 | C2×C6 | C6 | C22 | C22 | C2 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 4 | 3 | 3 | 1 | 4 | 1 | 2 | 2 | 2 |
In GAP, Magma, Sage, TeX
C_2^4._{44}D_6
% in TeX
G:=Group("C2^4.44D6");
// GroupNames label
G:=SmallGroup(192,1150);
// by ID
G=gap.SmallGroup(192,1150);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,219,184,1571,297,6278]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^6=f^2=d,a*b=b*a,e*a*e^-1=f*a*f^-1=a*c=c*a,a*d=d*a,f*b*f^-1=b*c=c*b,e*b*e^-1=b*d=d*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^5>;
// generators/relations